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cases of massless (photon) and massive (electron) parti-
cles:

E2
e = m2c4 + p2ec

2

�
1 +

1

2
h0(0)

m

M
+

1

6
g00(0)

m2

M2

�
(3)

E2
 = p2c

2: (4)

We can now de�ne

c2e = c2
�
1 +

1

2
h0(0)

m

M
+

1

6
g00(0)

m2

M2

�
(5)

m2
e = m2

�
1 +

1

2
h0(0)

m

M
+

1

6
g00(0)

m2

M2

��2

(6)

to then write the dispersion relation in the familiar form

E2
e = m2

ec
4
e + p2ec

2
e: (7)

So, to lowest order, we have made slight changes to the
electron \speed of light" and mass.
The second method, which we will not utilize here, is

instead to write down a particle Lagrangian [24] which
includes Lorentz and CPT violating terms. A mapping
of the Lagrangian terms to a dispersion relation is non-
trivial (see [20] for a simple case); however, to �rst order
the changes to the photon and electron propagators in-
duce shifts to c and ce [25].

III. CALCULATION

For this paper we consider the tree-level photon decay
process  ! e+e�, which is kinematically forbidden for
ce = c. Following Ref. [25], we de�ne the parameter Æe
as2

Æe = c2 � c2e: (8)

For Æe > 0, photon decay occurs above a photon energy
threshold given by

Eth =
2mec

2
ep

Æe
c: (9)

This decay rate of was computed in Coleman & Glashow
(1997) as

� =
1

2
�

�
Æe
c2e

�
E
h
1� (Eth=E)

2
i3=2

: (10)

Using astrophysical constraints [23, 26], Æe can be lim-
ited to the range 10�16 > Æe > �10�17.
For decay product energy above about 2�1020eV, pho-

tons will outnumber protons, so we set Eth to this value

2 This is identical to �� � for n = 2 in the notation of Ref. [23].

and suggestively rewrite the decay rate above threshold
as:

�

�hc
� (1 km)�1

�
E

2� 1020 eV

��
Æe

3� 10�29

�
: (11)

This would rule out all but a terrestrial source of UHE
photons. The value Æe = 3 � 10�29 is used is a lower
limit; if Æe would be any lower the energy threshold
would become too high. This means that only Æe 2 (3�
10�29; 10�16) will correct for the photon overabundance
in top-down scenarios.

IV. DISCUSSION

Now we see what is required to have Æe in the neces-
sary range to allow for this photon decay. Using Eqs. (5)
and (8), we can write

Æe = �1

2
c2h0(0)

m

M
� 1

6
c2g00(0)

m2

M2
: (12)

Since the functions g(x) and h(x) are a priori ar-
bitrary, so are the values and signs of their deriva-
tives. It is argued in Ref. [18] that too strongly vary-
ing functions would be unphysical, and that the deriva-
tives should be of order unity.3 Adopting this, we can
ignore the g00(0) term in the above equation. In this
case, in order to have photon decay we need to require
h0(0) negative. Then Æe � mc2=2M � 3 � 10�23 and

Eth = 2mec
2
ec
p
2M=mc2 = 2

p
2meMc2 � 2 � 1017eV.

This value of Æe is (logarithmically) in the middle of our
allowable range.
While we only consider the case of photon to electron

decay, this tree level process requires only a charged de-
cay product Q and c > cQ; so at higher photon energies
one would have  ! l�l; q�q for charged leptons (l) and
quarks (q). Further, at one-loop level one also allows for
processes such as  ! �l ��l [25] and  ! N (photon
splitting) [27].
Unlike previous investigations [23, 25] where the

\speed of light" for each particle could be chosen inde-
pendently, this is not so in our case. Since Eq. 1 holds for
all types of particles, it is straightforward to see other ef-
fects this level of Lorentz invariance violation would have.
Using Eq. 5, we can in general write for two particles a
and b

Æab = c2a � c2b =
1

2
h0(0)c2

ma �mb

M

� (mb �ma)c2

2M
; (13)

3 Note that if this holds also for f(x), we erred in not including the
f 0(0) term in Eq. (2), as that dominates over the h0(0) termwhen
p >
�

mc. We will not apologizemuch for this, as we are looking at
the \lowest order" change in phenomenology (the change in the
\speeds of light") and not \next order" changes (such as vacuum
photon dispersion).
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where we have used h0(0) � �1. As a consequence,
Æpn � 10�22 for the proton-neutron system. From Ref.
[25], this would imply the proton would become unstable
above 5�1018eV and the neutron stable above 3�1018eV.
Thus, as noted in [15], the primary single hadron compo-
nent of UHECRs above about 1018eV would be neutrons.
Further, since Æ�p � 4� 10�20, this would eliminate the
GZK cuto� for protons and neutrons [15, 19, 20, 25].
Although we were motivated by the  ! e+e� reac-

tion, we can also allow  ! �0: Æ� � 7 � 10�21, so
that above E� � 2 � 1018eV the photon is unstable to
this decay [25]. Note that this is one decade higher than
where the photon becomes unstable to electron decay.
However, above E� � 2 � 1018eV, the pion is stable

against decay into photons. Since the overabundance of
photons in top-down spectra [8, 9, 10] is primarily due to

pion decay, these decays would not lead to photons with
energy more than 1018eV in the �rst place. The decay
�0 ! e+e� can still occur, but with a branching ratio
which is two orders of magnitude smaller than �0 ! .
Clearly, in order to see fully the modi�cations of the top-
down decay spectra, incorporations of Lorentz invariance
violation must be taken into account during, not just
after, the shower creation.
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